terça-feira, 29 de setembro de 2015

AULA 13/10 - Casif. da Estatistifica - Amostragem

Jamille Santos da Silva
Doutorado-Genética e Melhoramento
Orientador- Antonio Figueira
Projeto- Papel hormonal na interação com patógenos de estilos de vida diferentes


Alessandra koltun
Mestrado- CENA/USP
Orientador- Antonio Figueira
Projeto- Caracterização fisiológica de transportadores de amônio da família AMT2 (Ammonium transporters 2).



Classificações da Estatística:
·    Paramétrica
·    Não Paramétrica – Robusta
·    Uni variada

·    Multivariada

  Amostragem:
       - Cochran
       - ISO >= 10 repet. por taramento
       - Teorema do Limite Central
       - Potencia do Teste ~ ISO (Postagem de Pot. do Teste de 2015)
       - Estat. Experimental: 10 graus de liberdade (GL) ou 12 do resíduo e 20 GL totais ajustados 
Exemplo: DIC ou One Way
                 5 tratamentos
                 6  repetições de cada tratamento

Quadro de ANOVA:

      CV                 GL
--------------------------------
      Tratamentos    5-1 = 4
       Resíduo          29 - 4 =25
 -------------------------------
       Total (Aj)      5*6-1 = 29   OK/

       


       - Praxe das Ciências Humanas:
          Numero Magico
           n >= 400. Vanessa tem n = 655 
       - Outros:  
             - Método da Curvatura Máxima
             - ?????




 Cochran:












Tomada de Decisão em Pesquisa e Inteligência Organizacional


Livro Básico - Infer. Estat. Indutiva - Download












- Exemplo: Arquivo do Excel para Download:

           







Aparentemente há diferenças, as medias aritméticas são diferentes, umas maiores ou menores que as outras. Por exemplo o DBO da Área Urbana é 9,7 mg/l e da Área Semiurbana 7,2 mg/l. Essa informação é suficiente para tomar a decisão de falar que são diferentes?

Não, essa diferença de medias aritméticas é matemática, não estatística, para falar que são diferentes devemos aplicar um teste de hipótese estatístico (que faz parte da Inferência Estatística Indutiva), por exemplo o Teste T de Student (se os dados tiverem distribuição Normal) ou U de Mann–Whitney (Estatística Robusta) se tivermos problemas de normalidade, heterocedasticidade ou presença de outliers (dados fora de contexto), o se simplesmente não quisermos ou podermos, testar todas essas pressuposições.


Esses testes nos fornecerão uma Margem de Erro (probabilidade) e uma Margem de Confiança, para tomarmos a decisão da melhor maneira possível, por exemplo em ciência (teses, papers, congressos. Etc.) não são aceitas as tomadas de decisão sem os endossos probabilísticos.


OK, vamos fazer a primeira analise desses dados no Excel, utilizando macros analíticas (programas dentro do programa Excel). Uma dessas macros é Teste T de Student para Duas Amostras Independente com Variâncias Desconhecidas.

O teste T é a ferramenta mais importante para a tomada de decisão em gestão, inteligência e certificação internacional da qualidade.
Na área de pesquisa a principal ferramenta de tomada de decisão é ANOVA. ANOVA é uma generalização do Teste T, quando existem mais do que dois níveis do fator tratamentos, o Teste T é somente para dois níveis.



Em primeira instancia devemos ativar as macros analíticas do Excel, normalmente compramos o Excel e utilizamos somente uma parte dele, o mais frequente é não estarem ativadas (como comprar um apartamento de 3 quartos e utilizar somente um ou dois), nos departamentos, laboratóriosempresas, etc.



Vídeo para Ativar as Macros Analíticas do Excel:





Vídeo para Rodar a Macro Analitica Teste T de Student para Amostras Independentes em Excel:








·      Ho: Hipótese de Nulidade ou de Igualdade
o    DBO Reg. Urbana = DBO Reg. Semiurbana
o    DBO Reg. Urbana - DBO Reg. Semiurbana = 0
o     
·      H1:  Hipótese de Alternativa
o    H1a: Uni caudal: 
§  DBO Reg. Urbana > DBO Reg. Semiurbana
o    H1b: Bicaudal:
§  DBO Reg. Urbana    ≠ DBO Reg. Semiur.
·         H1a: Uni caudal - Demanda Informação Confiável Previa
·         H1b: Bicaudal - Sem Informação Previa

Teste-t: duas amostras presumindo variâncias diferentes
DBO - Urbana
DBO Semiurbana
Média
9,666667
7,166666667
Variância
2,333333
1,583333333
Observações
3
3
Hipótese da diferença de média
0
gl
4
Stat t
2,187975
P(T<=t) uni-caudal
0,046952
Margem de Erro
t crítico uni-caudal
2,131847
P(T<=t) bi-caudal
0,093904
Margem de Erro
t crítico bi-caudal
2,776445


Margem de Erro Uni caudal =4,7 %      
  • Demanda Informação Previa Confiável
    • Publicação (Academia)    
    •  Sumario Executivo (Empresa Privada)                                     

                                                                                                         
Margem de Erro Bi caudal = 9,4   %       

  • Não Demanda Informação Previa Confiável                

Resultados e Discussão (de um documento cientifico – Iniciação, TCC, Mestrado, Doutorado, Pós-doutorado, publicação):
Com Informação Previa Confiável:
A média aritmética para DBO dos ribeirões da região urbana (9,7 mg/l) foi maior significativamente ( p <  0,04695) do que media dos ribeirões da região semiurbana ( 7,2 mg/l).
Sem Informação Previa Confiável:
Não foram conseguidos argumentos suficientes para se rejeitar a hipótese de igualdade ( p < 0,093904151)


Tabela 32: Erros possíveis associados a teste de hipóteses
SituaçãoConclusão do teste
realRejeitar $ H_0$Não rejeitar $ H_0$
$ H_0$ Verdadeiraerro tipo Idecisão correta
$ H_0$ Falsadecisão corretaerro tipo II


Sumario Executivo (Empresa):
Com Informação Previa Confiável:
O DBO da área urbana (9,7 ) é maior do que o DBO da área semiurbana (7,2) com 95,3% de confiança;

Sem Informação Previa Confiável:
Não existe evidencia significativa de diferença na quantidade de DBO nas duas situações analisadas (margem de confiança insuficiente 91%)







Exercício  III - Tomada de Decisão em Pesquisa, Inteligencia Organizacional, etc. DL 1/4/2015


      


 - "Número mágico de 30 entrevistas"


Entrada
x
usp
x

27/09/13
para gasarrieAgnelo
Gabriel,
Conforme conversamos por telefone sobre :  QUAL A BASE TEÓRICA que Temos para fazer uma amostra de 30 entrevistas numa região, ou seja:  existe literatura que cita/comprove este número mágico?

Se sim, você pode me passar qual a base teórica e me encaminhar as referências?  Livros à respeito desse “número mágico “ de 30 entrevistas/região.

Um Abraço,
Marcelo

 Oi Marcelo a justificativa para o tamanho de amostra 30 é que pelo Teorema do Limite Central à medida que o tamanho da amostra fica grande o suficiente, a distribuição de amostragem da media aritmética passa a ser distribuída aproximadamente nos moldes da Distribuição Normal. Isso é verdadeiro independentemente do formato da distribuição dos valores individuais da população.
Que tamanho de amostra é grande o suficiente? Quando o tamanho da amostra é pelo menos igual a 30.
Fonte: Estatística – Teoria e Aplicações
Levine – Stephan et all.
2008.
Um abraço.
Gabriel.



Nenhum comentário:

Postar um comentário